चित्रानुसार, एक वृत्तीय तार (wire) परिनालिका को घेराबंद करता है परिनालिका में चुम्बकीय फ्लक्स एक नियत दर से इस पृष्ठ के तल से बाहर की ओर बढ़ रहा है. वृत्ताकार तार के परितः दक्षिणावर्त विद्युत वाहक बल $\varepsilon_0$ है. परिभाषा के अनुसार, वोल्टामीटर, दिए गए दो बिन्दुओं के मध्य वोल्टता के अंतर को निम्न समीकरण $V _{ b }- V _{ s }=\int_a^b \bar{E} \cdot d \bar{s}$ के अनुसार मापता है. मान लीजिये कि $a$ और $b$ एक-दूसरे के अत्यणु निकट हैं. तो पथ 1 के अनुरूप $V _{ b }- V _{ a }$ और पथ 2 के अनुरूप $V _{ a }- V _{ b }$ के मान क्रमशः क्या हैं?
$-\varepsilon_{0},-\varepsilon_{0}$
$-\varepsilon_{0}, 0$
$-\varepsilon_{0}, \varepsilon_{0}$
$\varepsilon_{0}, \varepsilon_{0}$
$2 \mathrm{~L} \times 2 \mathrm{~L} \times \mathrm{L}$ विमा वाले एक घनाभ के पृष्ठ ' $\mathrm{S}$ ' जिसका क्षेत्रफल $4 \mathrm{~L}^2$ हैं, के केन्द्र पर $q$ आवेश रखा है। ' $\mathrm{S}$ ' के विपरीत पृष्ठ से गुजरने वाला फ्लक्स है:
नीचे दो कथन दिए गए है, एक को अभिकथन $A$ एवं दूसरे को कारण $\mathrm{R}$ कहा गया है
अभिकथन $\mathrm{A}$ : यदि $30 \times 10^{-5} \mathrm{Cm}$ द्विध्रुव आघूर्ण वाला एक विद्युत द्विध्रुव, किसी बंद पृष्ठ से घिरा है, तो पृष्ठ
से निकलने वाले कुल फ्लक्स का मान शून्य होगा।
कारण $R$ : विद्युत द्विध्रुव में दो समान एवं विपरीत आवेश होते हैं।
उपर्युक्त कथनों के प्रकाश में, नीचे दिए गए विकल्पों में से सही उत्तर चुनें।
$z$-अक्ष के समांतर एक अनंत लम्बाई की पतली अचालक (non-conducting) तार पर एकसमान रेखीय आवेश घनत्व (uniform line charge density) $\lambda$ है। यह तार $R$ त्रिज्या वाले एक पतले अचालक गोलीय कोश (spherical shell) को इस प्रकार भेदता है कि आर्क (arc) $P Q$, गोलीय कोश के केंद्र $O$ पर $120^{\circ}$ का कोण बनाती है, जैसा कि चित्र में दर्शाया गया है। मुक्त आकाश का पराविधुतक (permittivity of free space) $\epsilon_0$ है। निम्नलिखित कथनों में से कौन सा (से) सही है (हैं)?
$(A)$ कोश से गुजरने वाला विधुत फ्लक्स (electric flux) $\sqrt{3} R \lambda / \epsilon_0$ है
$(B)$ विधुत क्षेत्र (electric field) का $z$-घटक ( $z$-component) कोश के पृष्ठ (surface) के सभी बिन्दुओं पर शून्य है
$(C)$ कोश से गुजरने वाला विधुत फ्लक्स (electric flux) $\sqrt{2} R \lambda / \epsilon_0$ है
$(D)$ विधुत क्षेत्र (electric field) कोश के पृप्ठ के सभी बिन्दुओं पर लम्बवत (normal) है
एक आवेश $Q$ एक $a$ भुजा वाले वर्गाकार सतह के केन्द्र से $a/2$ ऊँचाई पर रखा हुआ है (चित्र देखें)
वर्गाकार सतह से जाने वाला विघुत फ्लक्स होगा
यदि एक आवेश $q$ को एक अचालक बंद अर्द्धगोलाकार सतह के केन्द्र पर रखा जाता है तो समतल सतह से गुजरने वाला कुल फ्लक्स होगा